Abstract

BackgroundCentruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Although medically important, its venom has not yet been studied. Therefore, this communication aims to identify their venom components and possible functions.MethodsFingerprinting mass analysis of the soluble venom from this scorpion was achieved by high-performance liquid chromatography and electrospray mass spectrometry. Furthermore, the soluble venom and its toxic effects were evaluated extensively via electrophysiological assays in HEK cells expressing human voltage-gated Na+ channels (hNav 1.1 to Nav1.6), CHO cells expressing hNav 1.7, potassium channel hERG 1 (Ether-à-go-go-related-gene) and the human K+-channel hKv1.1.ResultsThe separation of soluble venom produced 60 fractions from which 83 distinct components were identified. The molecular mass distribution of these components varies from 340 to 21,120 Da. Most of the peptides have a molecular weight between 7001 and 8000 Da (46% components), a range that usually corresponds to peptides known to affect Na+ channels. Peptides with molecular masses from 3000 to 5000 Da (28% of the components) were identified within the range corresponding to K+-channel blocking toxins. Two peptides were obtained in pure format and completely sequenced: one with 29 amino acids, showing sequence similarity to an “orphan peptide” of C. limpidus, and the other with 65 amino acid residues shown to be an arthropod toxin (lethal to crustaceans and toxic to crickets). The electrophysiological results of the whole soluble venom show a beta type modification of the currents of channels Nav1.1, Nav1.2 and Nav1.6. The main effect observed in channels hERG and hKv 1.1 was a reduction of the currents.ConclusionThe venom contains more than 83 distinct components, among which are peptides that affect the function of human Na+-channels and K+-channels. Two new complete amino acid sequences were determined: one an arthropod toxin, the other a peptide of unknown function.

Highlights

  • Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico

  • We report the separation of its venom by chromatographic methods and identification of their molecular masses by mass spectrometry

  • high performance liquid chromatography (HPLC) separation and mass fingerprinting Separation of soluble venom by HPLC (Fig. 1) revealed more than 56 clear chromatographic peaks, which were collected in 60 distinct fractions

Read more

Summary

Introduction

Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Its venom has not yet been studied. This communication aims to identify their venom components and possible functions. Toxins from microorganisms, plants and animals are usually produced by highly specialized systems of exocrine cells or are synthesized in specific tissues of the organisms [1]. The toxins of arachnid origin, especially those from scorpions, are produced in a pair of glands located in the last segment of the metasoma, called the telson. The type of venom produced depends on the scorpion species, but usually the venom is neurotoxic and affects the central or peripheral nervous system of vertebrates and arthropods. The main effect is a modification of ion channel function of both excitable and non-excitable cells, often producing paralysis of the prey [2]. But only a few species are extremely dangerous to humans

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.