Abstract
A method of mass fabricating poly(ethylene glycol) (PEG) hydrogel microarrays is demonstrated. Microarrays of poly(ethylene glycol) dimethacrylate (PEG-DMA) with photoinitiator were patterned by one-dimensional (1-D) parallel dip-pen nanolithography (DPN), and the microarrays were cross-linked to form PEG hydrogels by UV irradiation in N2 air. As an ink material for DPN printing, solid and liquid phase of PEG-DMA were mixed and prepared to tune viscosity of the ink material by temperature. Thus, the diameter of the microarrays was able to be averagely controlled from 1.7 to 6.2 μm as temperature during printing was increased from 25 °C to 37 °C, respectively. The overall microarrays showed less than 16% coefficient of variation (C.V.). Moreover, small molecules, such as fluorescence dyes, were able to be embedded in the PEG hydrogel microarrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.