Abstract
This work designed a mass spectrometric biosensing strategy for the multiplex detection of matrix metalloproteinases (MMPs) with a mass-encoded suspension array. This array was fabricated as multiplex sensing probes by functionalizing magnetic beads with MMP-specific peptide-isobaric tags for relative and absolute quantification (iTRAQ) conjugates, which contained a hexahistidine tag for surface binding, a substrate region for MMP cleavage, and a coding region for the specific MMP. The integration of the multiplex coding ability of iTRAQ with ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and the proteolysis method for peptide digestion endowed the biosensing method with high throughput and ultrahigh sensitivity. This strategy could be conveniently performed by mixing the sample and the suspension array for enzymatic reactions and then digesting the uncleaved peptides with trypsin to release the coding regions for UPLC-MS/MS analysis. With MMP-2 and MMP-7 as analytes, the relative changes of peak area ratios of coding regions showed good linear responses in the ranges of 0.2-100 and 0.5-400 ng mL-1, with detection limits of 0.064 and 0.17 ng mL-1, respectively. The analysis of MMP activity in serum samples and its change responding to inhibitors demonstrated the specificity, practicability, and expansibility of the proposed strategy. This work paves a new avenue for the activity assays of multiplex enzymes and promotes the development of mass spectrometric biosensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.