Abstract

Capacitive resonant mass sensing using a single-crystalline silicon resonator with an electrical LC oscillator was demonstrated in ambient atmosphere. Using capacitive detection method, the detectable minimum mass of 1 x 10(-14) g was obtained in the self-oscillation of cantilever with a thickness of 250 nm. The noise amplitude of the sensor output corresponds to a vibration amplitude of 0.05 nm(Hz)(0.5) in the frequency domain compared with the actuation signal, which is equivalent to the detectable minimum capacitance variation of 2.4 x 10(-21) F. Using the capacitive detection method, mass/stress induced resonance frequency shift due to the adsorption of ethanol and moist vapor in a pure N(2) gas as a carrier is successfully demonstrated. These results show the high potential of capacitive silicon resonator for high mass/stress-sensitive sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.