Abstract

Robust and accurate schemes are designed to simulate the coupling between subsurface and overland flows. The coupling conditions at the interface enforce the continuity of both the normal flux and the pressure. Richards’ equation governing the subsurface flow is discretized using a backward differentiation formula and a symmetric interior penalty discontinuous Galerkin method. The kinematic wave equation governing the overland flow is discretized using a Godunov scheme. Both schemes individually are mass conservative and can be used within single-step or multi-step coupling algorithms that ensure overall mass conservation owing to a specific design of the interface fluxes in the multi-step case. Numerical results are presented to illustrate the performances of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.