Abstract

Data and predictions for the mass burning rates of di-tert-butyl peroxide (DTBP) pool fires (0.003 m < pool diameter < 3 m) are presented. The mass burning rates of DTBP fires are up to five times higher and are less dependent on pool diameter compared to hydrocarbon pool fires caused by an additional heat release rate due to exothermic decomposition reaction in the liquid phase. This heat release rate is calculated using a first-order reaction kinetic obtained from microcalorimetric measurements. A new model is derived considering the heat release rate due to the decomposition reaction, which is shown to be 40% of the heat release rate radiated to the pool surface. With the presented model, which also includes physical quantities, especially the limiting fuel concentration for upward flame propagation, it is possible to predict the mass burning rates of large DTBP pool fires. The predicted values are in very good agreement with the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call