Abstract
Passenger cars in Europe have become both heavier and more powerful over the past decades. This trend has increased vehicle utility but it might have also offset technical improvements in powertrain efficiency. Here, we analyze efficiency trade-offs and CO2 emissions for three popular compact cars in Germany. We find that mass, power, and front area of model variants has increased by 66%, 147%, and 22%, respectively between 1980 and 2018. In the same period, fuel consumption decreased 14% for gasoline models but it increased 9% for diesel models. However, if vehicle mass, power, and front area had remained at 1980 levels, technical efficiency improvements would have decreased the fuel consumption of gasoline and diesel models by 23% and 24%, respectively. The related efficiency trade-offs amount to 24 g CO2/km or 13% of the current fuel consumption for gasoline models and 40 g CO2/km or 25% of the current fuel consumption for diesel models. These findings suggest that about half of the technical efficiency improvements in gasoline models and all of the technical efficiency improvements in diesel models are offset through other vehicle attributes. By accounting for the observed efficiency trade-offs, climate policy could become more effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.