Abstract
AbstractIn this article we present results for the viscosity and the mass transfer rates of hydrogen/air, hydrogen/oxygen, methane/air and methane/oxygen mixtures in the temperature range from 1000 to 7000 K and a pressure range from 103 to 106 Pa. In addition, the combustion ratio is varied from 0 to ∞. The transport properties are calculated from the first order solution of the Chapman Enskog approach to the Boltzmann equation, assuming chemical equilibrium composition. An extensive literature study was performed to derive experimental and/or theoretically based data for the respective binary interaction potentials. The values of the collision integrals, as derived from a complex numerical integration procedure, are correlated to an approximation formula. In addition, the exact solutions of the kinetic theory are compared to frequently used empirical mixture rules. For the mixture viscosity an easy approximation formula is deduced from the gas‐kinetic theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.