Abstract

The Navier–Stokes order hydrodynamic equations for a low-density granular mixture obtained previously from the Chapman–Enskog solution to the Boltzmann equation are considered further. The six transport coefficients associated with mass and heat flux in a binary mixture are given as functions of the mass ratio, size ratio, composition, and coefficients of restitution. Their quantitative variation across this parameter set is demonstrated using low-order Sonine polynomial approximations to solve the exact integral equations. The results are also used to quantify the violation of the Onsager reciprocal relations for a granular mixture. Finally, the stability of the homogeneous cooling state is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.