Abstract
The price evolution of non-renewable resources versus the consumption rate is investigated with the aim of constructing the energy supply curve. The case studied is without accumulation nor depletion of the resources and the mass and energy-capital conservation equations are solved under the condition of the same mass flow rate of extraction and sale. The energy supply curve of extracted resource is dependent on the newly defined parameter, RINE, Rate of Interest of Non-extracted resources on the Extraction rate. The energy supply curve of sold resource is dependent on the newly defined parameter, RISE, Rate of Interest of Sold resources on the Extraction rate, in case the rate of interest of non-extracted resources, r N , is nil. In general, the energy supply curve of sold resource is dependent also on two dimensionless parameters, Dimensionless Critical Initial Price of Sold resources , i.e. DCIPS, and Dimensionless Critical Initial Price Extreme of Sold resources, i.e. DCIPES. The energy supply curve of sold resources is investigated under different relations between three parameters, i.e. extraction rate and interest rates of non-extracted and extracted/sold resources. New trends are observed in the economic market of non-renewable energy resources. The energy supply curve of the difference between sold and extracted resource is also obtained and is dependent on two dimensionless parameters, Critical Initial Price Difference , i.e. CIPD, and Critical Extreme of the Initial Price Difference, i.e. CEIPD. Finally, the predictions obtained with the present approach are compared to the real evolution of the world price of oil and the European price of gas versus the world consumption during the last three decades, i.e. from 1980 until 2005 for oil and from 1984 until 2005 for gas, taking into account inflation, discount and prime rates of the economic market. The agreement is acceptable but, more important, the trend is correctly predicted. The price difference between sold and extracted resources is also investigated versus the dimensionless mass flow rate of extraction. The evolution is dependent on four parameters: RINE, RISE, DCIPS, and DCIPES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.