Abstract

The development of automated non-targeted workflows for small molecule analyses is highly desirable in many areas of research and diagnostics. Sufficient mass and chromatographic resolution is necessary for the detectability of compounds and subsequent componentization and interpretation of ions. The mass accuracy and relative isotopic abundance are critical in correct molecular formulae generation for unknown compounds. While high-resolution instrumentation provides accurate mass information, sample complexity can greatly influence data quality and the measurement of compounds of interest. Two high-resolution instruments, an Orbitrap and a Q-TOF, were evaluated for mass accuracy and relative isotopic abundance with various concentrations of a standard mixture in four complex sample matrices. The overall average ± standard deviation of the mass accuracy was 1.06 ± 0.76ppm and 1.62 ± 1.88ppm for the Orbitrap and the Q-TOF, respectively; however, individual measurements were ± 5ppm for the Orbitrap and greater than 10ppm for the Q-TOF. Relative isotopic abundance measurements for A + 1 were within 5% of the theoretical value if the intensity of the monoisotopic peak was greater than 1E7 for the Orbitrap and 1E5 for the Q-TOF, where an increase in error is observed with a decrease in intensity. Furthermore, complicating factors were found in the data that would impact automated data analysis strategies, including coeluting species that interfere with detectability and relative isotopic abundance measurements. The implications of these findings will be discussed with an emphasis on reasonable expectations from these instruments, guidelines for experimental workflows, data analysis considerations, and software design for non-targeted analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.