Abstract

ABSTRACTMost chemical transport models treat the partitioning of semi-volatile organic compounds (SVOCs) with the assumption of instantaneous thermodynamic equilibrium. However, the mass accommodation coefficients, α, of biomass-burning organic aerosol (BBOA) are largely unconstrained. During the FLAME-IV campaign, we thermally perturbed aged and fresh BBOA with a variable residence time thermodenuder and measured the resulting change in particle mass concentration to restore equilibrium. We used this equilibration profile to retrieve an effective α for components of BBOA that dictated this profile and found that the mass accommodation coefficients lie within the range 0.1 ≪ α ⩽ 1. A simple plume dilution model shows a maximum of only a 7% difference between a dynamical and an instantaneous equilibrium partitioning model using our best-estimate value for α. This supports continued use of the equilibrium assumption to treat partitioning of biomass-burning emissions in chemical-transport models.Copyright © ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call