Abstract

A technique to measure the mass ablation rate in direct-drive inertial confinement fusion implosions using a pinhole x-ray framing camera is presented. In target designs consisting of two layers of different materials, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher-Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers in the plasma. The emergence of the second peak was used to measure the burnthrough time of the outer layer, giving the average mass ablation rate of the material and instantaneous mass remaining. By varying the thickness of the outer layer, the mass ablation rate can be obtained as a function of time. Simulations were used to validate the methods and verify that the measurement techniques are not sensitive to perturbation growth at the ablation surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.