Abstract

Androgen deprivation therapy has constituted the main treatment for prostate cancer; however, tumors ultimately progress to hormone-independent prostate cancer (HIPC), and suitable therapeutic strategies for HIPC are not available. Maspin, which is also known as mammary serine protease inhibitor, has been suggested to be a valuable focus for targeted cancer therapy. Specifically, maspin has been shown to be upregulated after androgen ablation therapy. Gemcitabine is used as a first-line therapy for metastatic castration-resistant prostate cancer, but its disease control rate is low. Furthermore, the role of maspin in the therapeutic efficacy of gemcitabine for HIPC remains unclear. The expression levels of maspin in PC-3 and DU145 cells were determined by real-time PCR and Western blotting. Furthermore, the expression of maspin was silenced using shRNA technology to generate maspin-KD cells. The cytotoxicity of gemcitabine to prostate cancer cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-3,5-diphenyl tetrazolium bromide (MTT) assays, whereas flow cytometry analyses and annexin V-propidium iodide (PI) apoptosis assays were used to assess the ability of gemcitabine to induce apoptosis in maspin-KD and control cells. Additionally, the expression patterns of anti-apoptosis proteins (myeloid cell leukemia 1 (Mcl-1) and B cell lymphoma 2 (Bcl-2)) and pro-apoptosis proteins (Bcl-2-associated death promoter (Bad) and Bcl-2-associated X protein (Bax)) were determined by Western blotting. In this study, PC-3 cells were more resistant to gemcitabine administration than DU145 cells, which correlated with the higher expression levels of maspin observed in PC-3 cells. Furthermore, maspin knockdown enhanced gemcitabine-induced cell death, as evidenced by the increased number of apoptotic cells. Gemcitabine treatment upregulated the levels of anti-apoptosis proteins (Mcl-2 and Bcl-2) in both scrambled control and maspin-KD cells; however, the fold changes in Mcl-1 and Bcl-2 expression were larger in gemcitabine-treated scrambled control cells than in maspin-KD cells. Finally, our findings indicate for the first time that maspin may mediate the therapeutic efficacy of gemcitabine in HIPC. Our results demonstrate that maspin knockdown enhanced the sensitivity of androgen-independent prostate cancer cells to gemcitabine. Therefore, combining gemcitabine with a drug that targets maspin might constitute a valuable strategy for prostate cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.