Abstract

In this paper, laser annealing is used to produce metal (Ag) nanoparticles as etching catalyst on a silicon surface, which enables controllable fabrication of large-scale nanohole array surface texturing without using a mask. Semispherical Ag nanoparticles with variable size and distribution are achievable by manipulating the laser annealing parameters and metal film thickness, and the underlying physics is clarified. The nanoholes array in silicon can then be realized by selective etching of silicon under Ag pattern. The optical characteristics suggest that the surface reflection can be significantly suppressed owing to the nanohole texturing, which is promising for thin film photovoltaic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.