Abstract

A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surface. Although the rise of etching temperature can improve fabrication efficiency, fabrication depth is dependent only upon contact pressure and scanning cycles. With the increase of contact pressure during scanning, selective etching thickness of the scanned area increases from 0 to 2.9 nm before the yield of the quartz surface and then tends to stabilise after the appearance of a wear. Refabrication on existing nanostructures can be realised to produce deeper structures on the quartz surface. Based on Arrhenius fitting of the etching rate and transmission electron microscopy characterization of the nanostructure, fabrication mechanism could be attributed to the selective etching of the friction-induced amorphous layer on the quartz surface. As a maskless and low-destructive technique, the proposed friction-induced method will open up new possibilities for further nanofabrication.

Highlights

  • By virtue of its excellent chemical and physical properties, quartz has been widely used in micro/nanoelectromechanical systems (MEMS/NEMS), such as piezoelectric sensors [1], biochips [2], optical sensors [3], etc

  • Since no deformation or removal of material was observed on the scanned area, the scanning can be considered as a wearless process [20]

  • In conclusion, we have presented a maskless and lowdestructive method for nanofabrication on quartz based on atomic force microscopy (AFM)

Read more

Summary

Introduction

By virtue of its excellent chemical and physical properties, quartz has been widely used in micro/nanoelectromechanical systems (MEMS/NEMS), such as piezoelectric sensors [1], biochips [2], optical sensors [3], etc. Electron beam lithography has a better resolution in nanofabrication [7], high-energy beam can cause undesirable amorphization on quartz [8] By virtue of their high precision, proximal probe methods based on scanning tunnel microscopy and atomic force microscopy (AFM) have been employed to fabricate nanostructures [9,10,11,12,13]. Hillock-like nanostructures can be fabricated on silicon and quartz surfaces by sliding a diamond tip with repeated scratching cycles under suitable low loads [12,13] Since such hillocks are mainly generated from mechanical deformation of substrates, possible lattice damages may form on the surface of the hillocks and reduce their mechanical properties [14]. Because the lattice damages are detrimental to the applications of quartz devices [15,16], it is imperative to develop a straightforward and low-destructive nanofabrication method for the quartz surface

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.