Abstract

The "temporal effect" in simultaneous masking may be characterized by better probe detection thresholds for a short, tonal probe presented at the temporal center of a masker compared to at the onset of a masker. Energy-based models of masking have been used to interpret the temporal effect as evidence that the gain of the auditory system decreases during acoustic stimulation. This study shows that masking from temporal-envelope fluctuations of a precursor or from a temporal gap between stimuli violates the assumptions of energy-based models and complicates the interpretation of temporal effects in terms of a reduction in gain. Detection thresholds were measured for a 6-ms, 4000-Hz probe preceded by a narrowband precursor and presented 2-, 197-, or 392-ms after the onset of a narrowband masker. The delay between the precursor offset and masker onset ranged from -2 to 250 ms. Probe thresholds were elevated in the presence of precursors with fluctuating compared to flattened temporal envelopes and when a temporal gap was inserted between the precursor and masker. The results suggest that the interpretation and design of temporal-effect studies should consider the masking effects of temporal-envelope fluctuations. These findings are consistent with speech-perception experiments that show masking from temporal-envelope fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call