Abstract

Age-related hearing decline typically includes threshold shifts as well as reduced wave I auditory brainstem response (ABR) amplitudes due to cochlear synaptopathy/neuropathy, which may compromise precise coding of suprathreshold speech envelopes. This is supported by findings with older listeners, who have difficulties in envelope and speech processing, especially in noise. However, separating the effects of threshold elevation, synaptopathy, and degradation by noise on physiological representations may be difficult. In the present study, the effects of notched, low- and high-pass noise on envelope-following responses (EFRs) in aging were compared when sound levels (aged: 85-dB SPL; young: 60- to 80-dB SPL) were matched between groups peripherally, by matching wave I ABR amplitudes, or centrally by matching EFR amplitudes. Low-level notched noise reduced EFRs to sinusoidally amplitude-modulated (SAM) tones in young animals for notch widths up to 2 octaves. High-pass noise above the carrier frequency reduced EFRs. Young animals showed EFR reductions at lower noise levels. Low-pass noise did not reduce EFRs in either young or aged animals. High-pass noise may affect EFR amplitudes in young animals more than aged by reducing the contributions of high-frequency-sensitive inputs. EFRs to SAM tones in modulated noise (NAM) suggest that neurons of young animals can synchronize to NAM at lower sound levels and maintain dual AM representations better than older animals. The overall results show that EFR amplitudes are strongly influenced by aging and the presence of a competing sound that likely reduces or shifts the pool of responsive neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.