Abstract

We introduce the new Masked Interval Routing Scheme, MIRS for short, where a maskis added to each interval to indicate particular subsets of consecutive labels. Interval routing becomes more flexible, with the classical IRS scheme being a special case of MIRS. We then take two directions. First we show that the interval information stored in the network may be drastically reduced in the hard cases, proving that in globe graphs of O(n^2) vertices the number of intervals per edge goes down from Omega(n) to O(log n). The technique is then extended to globe graphs of arbitrary dimensions. Second we show that MIRS may be advantageously used in fault-tolerant networks, proving that optimal routing with one interval per edge is still possible in hypercubes with a harmless subset of faulty vertices. This work is aimed to introducing a new technique. Further research is needed in both the directions taken here. Still, the examples provided show that MIRS may be useful in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.