Abstract

Convolutional neural networks (CNNs) have exhibited superior performance in various types of classification and prediction tasks, but their interpretability remains to be low despite years of research effort. It is crucial to improve the ability of existing models to interpret deep neural networks from both theoretical and practical perspectives and to develop new neural network models with interpretable representations. The aim of this paper is to propose a set of novel masked CNN (MCNN) models with better ability to interpret networks and more accurate prediction. The key ideas behind MCNNs are to introduce a latent binary network to extract informative regions of interest that contain important signals for prediction and to integrate the latent binary network with CNNs to achieve better prediction in various supervised learning problems. Extensive numerical studies demonstrate the competitive performance of the proposed MCNN models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.