Abstract
Background: A leading cause of emergency abdominal surgery, appendicitis is a common condition affecting millions of people worldwide. Automatic and accurate segmentation of the appendix from medical imaging is a challenging task, due to its small size, variability in shape, and proximity to other anatomical structures. Methods: In this study, we propose a backbone-enriched Mask R-CNN architecture (MaskAppendix) on the Detectron platform, enhanced with Gradient-weighted Class Activation Mapping (Grad-CAM), for precise appendix segmentation on computed tomography (CT) scans. In the proposed MaskAppendix deep learning model, ResNet101 network is used as the backbone. By integrating Grad-CAM into the MaskAppendix network, our model improves feature localization, allowing it to better capture subtle variations in appendix morphology. Results: We conduct extensive experiments on a dataset of abdominal CT scans, demonstrating that our method achieves state-of-the-art performance in appendix segmentation, outperforming traditional segmentation techniques in terms of both accuracy and robustness. In the automatic segmentation of the appendix region in CT slices, a DSC score of 87.17% was achieved with the proposed approach, and the results obtained have the potential to improve clinical diagnostic accuracy. Conclusions: This framework provides an effective tool for aiding clinicians in the diagnosis of appendicitis and other related conditions, reducing the potential for diagnostic errors and enhancing clinical workflow efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.