Abstract

Defect generation is a crucial method for solving data problems in industrial defect detection. However, the current defect generation methods suffer from the problems of background information loss, insufficient consideration of complex defects, and lack of accurate annotations, which limits their application in defect segmentation tasks. To tackle these problems, we proposed a mask-guided background-preserving defect generation method, MDGAN (mask-guided defect generation adversarial networks). First, to preserve the normal background and provide accurate annotations for the generated defect samples, we proposed a background replacement module (BRM), to add real background information to the generator and guide the generator to only focus on the generation of defect content in specified regions. Second, to guarantee the quality of the generated complex texture defects, we proposed a double discrimination module (DDM), to assist the discriminator in measuring the realism of the input image and distinguishing whether or not the defects were distributed at specified locations. The experimental results on metal, fabric, and plastic products showed that MDGAN could generate diversified and high-quality defect samples, demonstrating an improvement in detection over the traditional augmented samples. In addition, MDGAN can transfer defects between datasets with similar defect contents, thus achieving zero-shot defect detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call