Abstract
Due to the challenges of densely compacted body parts, nonrigid clothing items, and severe overlap in crowd scenes, human parsing needs to focus more on multilevel feature representations compared to general scene parsing tasks. Based on this observation, we propose to introduce the auxiliary task of human mask and edge detection to facilitate human parsing. Different from human parsing, which exploits the discriminative features of each category, human mask and edge detection emphasizes the boundaries of semantic parsing regions and the difference between foreground humans and background clutter, which benefits the parsing predictions of crowd scenes and small human parts. Specifically, we extract human mask and edge labels from the human parsing annotations and train a shared encoder with three independent decoders for the three mutually beneficial tasks. Furthermore, the decoder feature maps of the human mask prediction branch are further exploited as attention maps, indicating human regions to facilitate the decoding process of human parsing and human edge detection. In addition to these auxiliary tasks, we further alleviate the problem of deformed clothing items under various human poses by tracking the deformation patterns with the deformable convolution. Extensive experiments show that the proposed method can achieve superior performance against state-of-the-art methods on both single and multiple human parsing datasets. Codes and trained models are available https://github.com/ViktorLiang/MGDAN .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.