Abstract

The computer cost for mask data processing grows increasingly more expensive every year. However the Graphics Processing Unit (GPU) has evolved dramatically. The GPU which originally was used exclusively for digital image processing has been used in many fields of numerical analysis. We developed mask data processing techniques using GPUs together with distributed processing that allows reduced computer costs as opposed to a distributed processing system using just CPUs. Generally, for best application performance, it is important to reduce conditional branch instructions, to minimize data transfer between the CPU host and the GPU device, and to optimize memory access patterns in the GPU. Hence, in our optical proximity correction (OPC), the light intensity calculation step, that is the most time consuming part of this OPC, is optimized for GPU implementation and the other inefficient steps for GPU are processed by CPUs . Moreover, by fracturing input data and balancing a computational road for each CPU, we have put the powerful distributed computing into practice. Furthermore we have investigated not only the improvement of software performance but also how to best balance computer cost and speed, and we have derived a combination of the CPU hosts and the GPU devices to maximize the processing performance that takes computer cost into account . We have also developed a recovery function that continues OPC processing even if a GPU breaks down during mask data processing for a production. By using the GPUs and distributed processing, we have developed a mask data processing system which reduces computer cost and has high reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.