Abstract

Automated segmentation algorithms for dermoscopic images serve as effective tools that assist dermatologists in clinical diagnosis. While existing deep learning-based skin lesion segmentation algorithms have achieved certain success, challenges remain in accurately delineating the boundaries of lesion regions in dermoscopic images with irregular shapes, blurry edges, and occlusions by artifacts. To address these issues, a multi-attention codec network with selective and dynamic fusion (MASDF-Net) is proposed for skin lesion segmentation in this study. In this network, we use the pyramid vision transformer as the encoder to model the long-range dependencies between features, and we innovatively designed three modules to further enhance the performance of the network. Specifically, the multi-attention fusion (MAF) module allows for attention to be focused on high-level features from various perspectives, thereby capturing more global contextual information. The selective information gathering (SIG) module improves the existing skip-connection structure by eliminating the redundant information in low-level features. The multi-scale cascade fusion (MSCF) module dynamically fuses features from different levels of the decoder part, further refining the segmentation boundaries. We conducted comprehensive experiments on the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. The experimental results demonstrate the superiority of our approach over existing state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.