Abstract

A set of empirical rovibrational energy levels, obtained through the MARVEL (measured active rotational-vibrational energy levels) procedure, is presented for the C O isotopologue of carbon dioxide. This procedure begins with the collection and analysis of experimental rovibrational transitions from the literature, allowing for a comprehensive review of the literature on the high-resolution spectroscopy of C O , which is also presented. A total of 60sources out of more than 750 checked provided 14,101uniquely measured and assigned rovibrational transitions in the wavenumber range of 579-13,735 cm . This is followed by a weighted least-squares refinement yielding the energy levels of the states involved in the measured transitions. Altogether 6318empirical rovibrational energies have been determined for C O . Finally, estimates have been given for the uncertainties of the empirical energies, based on the experimental uncertainties of the transitions. The detailed analysis of the lines and the spectroscopic network built from them, as well as the uncertainty estimates, all serve to pinpoint possible errors in the experimental data, such as typos, misassignment of quantum numbers, and misidentifications. Errors found in the literature data were corrected before including them in the final MARVEL dataset and analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call