Abstract
There is a fascinating interplay and overlap between recursion theory and descriptive set theory. A particularly beautiful source of such interaction has been Martin's conjecture on Turing invariant functions. This longstanding open problem in recursion theory has connected to many problems in descriptive set theory, particularly in the theory of countable Borel equivalence relations. In this paper, we shall give an overview of some work that has been done on Martin's conjecture, and applications that it has had in descriptive set theory. We will present a long unpublished result of Slaman and Steel that arithmetic equivalence is a universal countable Borel equivalence relation. This theorem has interesting corollaries for the theory of universal countable Borel equivalence relations in general. We end with some open problems, and directions for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.