Abstract

Let $X$ be a process defined on an optional random set. The paper develops two different conditions on $X$ guaranteeing that it is the restriction of a uniformly integrable martingale. In each case, it is supposed that $X$ is the restriction of some special semimartingale $Z$ with canonical decomposition $Z=M+A$. The first condition, which is both necessary and sufficient, is an absolute continuity condition on $A$. Under additional hypotheses, the existence of a martingale extension can be characterized by a strong martingale property of $X$. Uniqueness of the extension is also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.