Abstract

The purpose of the present work is twofold. First, we develop the theory of general self-similar growth-fragmentation processes by focusing on martingales which appear naturally in this setting and by recasting classical results for branching random walks in this framework. In particular, we establish many-to-one formulas for growth-fragmentations and define the notion of intrinsic area of a growth-fragmentation. Second, we identify a distinguished family of growth-fragmentations closely related to stable Levy processes, which are then shown to arise as the scaling limit of the perimeter process in Markovian explorations of certain random planar maps with large degrees (which are, roughly speaking, the dual maps of the stable maps of Le Gall and Miermont in Ann Probab 39:1–69, 2011). As a consequence of this result, we are able to identify the law of the intrinsic area of these distinguished growth-fragmentations. This generalizes a geometric connection between large Boltzmann triangulations and a certain growth-fragmentation process, which was established in Bertoin et al. (Ann Probab, accepted).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.