Abstract
Let $$(\Omega ,{\mathcal {F}},{\mathbb {P}})$$ be a probability space, $$\varphi :\ \Omega \times [0,\infty )\rightarrow [0,\infty )$$ a Musielak–Orlicz function, and $$q\in (0,\infty ]$$ . In this article, the authors introduce five martingale Musielak–Orlicz–Lorentz Hardy spaces and prove that these new spaces have some important features such as atomic characterizations, the boundedness of $$\sigma $$ -sublinear operators, and martingale inequalities. This new scale of martingale Hardy spaces requires the introduction of the Musielak–Orlicz–Lorentz space $$L^{\varphi ,q}(\Omega )$$ . In particular, the authors show that this Lorentz type space has some fundamental properties including the completeness, the convergence, real interpolations, and the Fefferman–Stein vector-valued inequality for the Doob maximal operator. As applications, the authors prove that the maximal Fejer operator is bounded from the martingale Musielak–Orlicz–Lorentz Hardy space $$H_{\varphi ,q}[0,1)$$ to $$L^{\varphi ,q}[0,1)$$ , which further implies some convergence results of the Fejer means. Moreover, all the above results are new even for Musielak–Orlicz functions with particular structure such as weight, weight Orlicz, and double-phase growth. The main approach used in this article can be viewed as a combination of the stopping time argument in probability theory and the real-variable technique of function spaces in harmonic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.