Abstract
Necessary and sufficient conditions are derived for optimal saving in a stochastic neo-classical one-good world with discrete time. The usual technique of dynamic programming is replaced by classical variational and concavity arguments, modified to take account of conditions of measurability which represent the planner's information structure. Familiar conditions of optimality are thus extended to amit production risks represented by quite general random processes - no i.i.d.r.v.s., stationarity or Markov dependence are assumed - while utility and length of life also may be taken as random. It is found that the 'Euler' conditions may be interpreted as martingale properties of shadow prices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.