Abstract

This paper continues a series of papers that develop a new approach to syntax and semantics of dependent type theories. Here we study the interpretation of the rules of the identity types in the intensional Martin-Löf type theories on the C-systems that arise from universe categories. In the first part of the paper we develop constructions that produce interpretations of these rules from certain structures on universe categories while in the second we study the functoriality of these constructions with respect to functors of universe categories. The results of the first part of the paper play a crucial role in the construction of the univalent model of type theory in simplicial sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.