Abstract

Abstract In this paper, we study the Martin kernels of general open sets associated with inaccessible points for a large class of purely discontinuous Feller processes in metric measure spaces. Let D be an unbounded open set. Infinity is accessible from D if the expected exit time from D is infinite, and inaccessible otherwise. We prove that under suitable assumptions there is only one Martin boundary point associated with infinity, and that this point is minimal if and only if infinity is accessible from D. Similar results are also proved for finite boundary points of D.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.