Abstract

The effects of magnetic field and hydrostatic pressure on martensitic transformation have been systematically investigated by using Ni2MnGa, Ni2.14Mn0.84Ga1.02, and Ni2.14Mn0.92Ga0.94, which exhibit P(parent phase)-I(intermediate phase)-10M, P-14M-2M, and P-2M transformation, respectively. The following results were obtained. (i) The P-I transformation temperature does not change by magnetic field. (ii) The I-10M and the P-14M transformation temperatures decrease under applied magnetic field up to 0.8 MA/m and 0.4 MA/m, respectively, and then increase with increasing applied magnetic field higher than those fields. (iii) The 14M-2M transformation temperature increases under a magnetic field up to 0.4 MA/m and decreases under magnetic field up to 0.8 MA/m and then increases again when the magnetic field becomes higher than 0.8 MA/m. (iv) The P-2M transformation temperature increases linearly with increasing applied magnetic field. (v) All transformation temperatures increase linearly with increasing hydrostatic pressure. The experimental results mentioned above (i)~(iv) under magnetic field can be well explained by using the Clausius-Clapeyron equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.