Abstract

Reduced-activation ferritic–martensitic Eurofer-97 and ODS-Eurofer steels are potential candidates for structural applications in advanced nuclear reactors. Samples of both steel grades in the as-tempered condition were austenitized in vacuum for 1h from 900°C to 1300°C followed by air cooling to room temperature. The microstructure was characterized by dilatometry, electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). Thermodynamic calculations provided by Thermo-Calc software were used to determine their transformation temperatures. Even having similar chemical composition, important changes were observed after martensitic transformation in these steels. Significant austenitic grain growth was observed in Eurofer-97 steel leading to the development of coarser martensitic packets. Contrastingly, austenitic grain growth was prevented in ODS-Eurofer steel due to fine and stable dispersion of Y-based particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call