Abstract

We successfully developed a mechanical metamaterial that displays martensitic transformation for the first time. This metamaterial has a bistable structure capable of transitioning between two stable configurations through shear deformation. The outer shape of the unit cell of this structure is a parallelogram, with its upper and lower sides forming the bases of two solid triangles. The vertices from these triangles within the parallelogram are linked by short beams, while the remaining vertices are linked by long beams. The elastic energy of the essential model of the metamaterial was formulated analytically. The energy barrier between these two stable configurations consists of the elastic strain energy due to the tensile deformation of the short beams, the compressive deformation of the long beams, and the bending deformation of the connecting hinges. One example of a novel metamaterial was additively manufactured via the materials extrusion (MEX) process of thermoplastic polyurethane. The metamaterial exhibited deformation behaviors characteristic of martensitic transformations. This mechanical metamaterial has the potential to obtain properties caused by martensitic transformation in actual materials, such as the shape memory effect and superelasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call