Abstract

Non-isothermal compressive deformation was performed on high strength steel 22SiMn2TiB for the study of martensitic phase transformation from deformed austenite. The transformation start temperature M s decreased with the increase of deformation from 0 to 50 pct, and the variation of deformation rate (0.1 and 10 s−1) and the appearance of deformation-induced ferrite and bainite showed no influence on the change of M s temperature. The deformation at both the rates increased the volume fraction of retained austenite; however, the carbon content of retained austenite decreased at 10 s−1 and remained basically unchanged at 0.1 s−1. The yield strength of austenite at M s temperature and the stored energy in deformed austenite were experimentally obtained, with which the relationships between the change of M s temperature and the thermodynamic driving force for martensitic phase transformation from deformed austenite were established by the use of the Fisher-ADP–Hsu model. And finally, the transformation kinetics was analyzed by the Magee–Koistinen–Marhurger equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.