Abstract

Using molecular-dynamics simulation, we study the austenitic and martensitic phase transformation in Fe–C nanowires with C contents up to 1.2 at%. The transformation temperatures decrease with C content. The martensite temperature decreases with wire diameter towards the bulk value. During the transformation, the bcc and fcc phases obey the Kurdjumov–Sachs orientation relationship. For ultrathin wires (diameter D ⩽ 2.8 nm), we observe wire buckling as well as shape-memory effects. Under axial tensile stress the martensite transformation is partially suppressed, leading to strong plastic deformation. Under the highest loads, the austenite only partially back-transforms while the crystalline phases in the wire re-orient giving the multi-phase mixture a high tensile strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.