Abstract

Cu-based shape memory alloys have been hyped as the ‘heir’ and pragmatic substitute to NiTi alloys for shape memory applications. Considerations from relatively low materials cost, processing ease, and modest shape memory properties, have been advanced as reasons justifying this projection. However, structural transformation induced phase stabilization - referred to as martensite ageing, has been reported to be a huge scourge constraining the thermo-responsiveness of these alloys, and limiting their service reliability. Studies on the mechanisms and effects of martensite ageing in Cu-based shape memory alloys (SMAs) have been reported in bits and patches, or encapsulated in broad ranged topical issues on the system. A comprehensive and exclusive review of martensite ageing in Cu-based SMAs has been lacking – thus the need for the present work. This review covers the general mechanisms of martensite ageing and its effects on the transformation behaviour, mechanical properties, shape memory functionality, and considers the implications on commercial utilization of the Cu-based SMAs. Specifically, Cu-Al-Mn, Cu-Al-Be, Cu-Al-Ni, Cu-Zn-Al, and Cu-Zn-Sn alloys were studied. The observations indicated that factors such as alloy composition, phase and microstructural parameters, and processing conditions, significantly dictate the mechanism and propensity to martensite stabilization, and also the extent to which the mechanical and shape memory characteristics are altered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.