Abstract

The south residual cap of Mars is commonly described as a thin and bright layer of CO 2-ice. The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is a low-frequency radar on board Mars Express operating at the wavelength between 55 and 230 m in vacuum. The reflection of the radar wave on a stratified medium like the residual cap can generate interferences, causing weaker surface reflections compared to reflections from a pure water ice surface. In order to understand this anomalous low reflectivity, we propose a stratified medium model, which allows us to estimate both the thickness and the dielectric constant of the optically thin slab. First, we consider the residual cap as single unit and show that the decrease in the reflected echo strength is well explained by a mean thickness of 11 m and a mean dielectric constant of 2.2. This value of dielectric constant is close to the experimental value 2.12 for pure CO 2-ice. Second, we study the spatial variability of the radar surface reflectivity. We observe that the reflectivity is not homogeneous over the residual cap. This heterogeneity can be modeled either by variable thickness or variable dielectric constant. The surface reflectivity shows that two different units comprise the residual cap, one central unit with high reflectivity and surrounding, less reflective units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call