Abstract

Recent coastal storms and associated recovery efforts have led to increased investment in nature-based coastal protection, including restoration of salt marshes and construction of living shorelines. In particular, many of these efforts focus on increasing vertical elevation through sediment nourishment, where sediment is removed from the tidal channel and placed on the marsh plain, or preventing lateral erosion through shoreline protection. In the USA alone, millions of dollars have been allocated or spent on these coastal protection solutions over the last few decades because of their perceived sustainability and ecologically positive co-benefits including habitat provision and carbon sequestration. These projects would benefit from integration of sediment transport pathways, budgets, and metrics during planning and modeling of restoration outcomes, in order to evaluate sustainability before investment. This is analogous to the decades of experience with coastal management and engineering on the open coast. Salt marshes are geomorphic features that rely partially on external sediment supply to maintain their network of tidal channels, intertidal flats, and marsh plain. Removing sediment from one component of the overall system to nourish another component may be counterproductive, given that the net sediment budget is unchanged. For example, dredging a tidal channel beyond its equilibrium condition will cause it to fill with sediment from the tidal flat or elsewhere in the system. This may cause slumping of the marsh edge, or over-deepening of other sections of the channel to compensate. Similarly, shoreline protection that prevents edge erosion hampers the marsh plain’s ability to accrete on the levee and naturally transgress landward or it starves other components of the system of regularly supplied sediment. A limited vertical or lateral-only perspective, instead of a three-dimensional perspective, during project planning and evaluation may lead to suboptimal decision-making regarding restoration priorities, approaches, and outcomes. I contend that before significant investments are made in marsh restoration through sediment nourishment or shoreline protection, sediment transport measurements and models that consider sediment dynamics should be integrated into the early phases of restoration planning. This will help identify where and under what conditions marsh restoration will most likely be successful and economically justified. Triaging and prioritizing is then possible, which is a sustainable approach for restoration, given the persistent vulnerability of marshes to sea-level rise, storms, and sediment deficits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.