Abstract

The need to understand the processes contributing to marsh sedimentation has become more urgent with the recent recognition of the role of tidal marshes as sea defences, as well as the many restoration efforts currently under way. This study was designed to build upon previous sedimentation work at Scolt Head Island by Combining techniques for measuring short-term sedimentation, with detailed assessment of hydroperiod, previously used only in comparison with longer-term accretion measurements or in micro-tidal systems. Measurements of water level, sediment deposition (at various distances from the creek margin) and suspended sediment concentration (SSC) (creek margin and an interior site) were made at Hut Marsh over three sequential over-marsh tides during May 1994. Sediment trap data show a significant trend of declining sediment deposition away from the creek when data from all three tides are combined. All tides show higher SSC on the flood tide than on the ebb tide at the creek margin location. There is little difference in flood and ebb SSCs at the interior site. An order of magnitude decrease in sediment deposition within 20 m on the creek shows the rapidity with which sediment is deposited on these marshes. Higher tides influence both the magnitude and pattern of marsh surface sediment deposition. Increased creek velocities on higher tides provide more potential for resuspension within the creek and increase the supply of sediment to the marsh surface. This study suggests that the design of tidal creeks may be essential for the development of sustainable coastal marshes in restoration projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.