Abstract

<p>The ionopause is a tangential discontinuity in the ionospheric thermal plasma density profile that marks the upper boundary of the ionosphere for unmagnetized planets. Since only Venus and Mars have no global “dipole” magnetic fields, ionopauses are unique to those planets. For Venus, the ionopause formation is well characterized because the thermal pressure of the ionosphere is usually larger than the solar wind dynamic pressure. For Mars, however, the maximum thermal pressure of the ionosphere is usually insufficient to balance the total pressure in the overlying magnetic pileup boundary. Therefore, the Martian ionopause is not always formed, and when it does, it is highly structured and is located at different altitudes. In this study, we characterise the Martian ionopause formation from the point of view of the electron density and electron temperature, as well as the thermal, magnetic and dynamic pressures. The objective is to investigate under which circumstances the Martian ionopause is formed, both over and far from crustal magnetic fields, and compare to the Venus’ case. We use several multi-plasma and magnetic field in-situ observations from the three deep dip campaigns of the MAVEN mission that occurred on the dayside of Mars (near subsolar point), as well as in-situ solar wind plasma observations from the Mars Express mission. We find that that 36% of the electron density profiles over strong crustal magnetic field regions had an ionopause event in contrast to the 54% of electron density profiles far from strong crustal magnetic field regions. We also find that the topside ionosphere is typically magnetized at mostly all altitudes. The ionopause, if formed, occurs where the total ionospheric pressure (magnetic+thermal) equals the upstream solar wind dynamic pressure.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.