Abstract

SummaryThis paper proposes a reinforcement learning‐based guidance law for Mars powered descent phase, which is an effective online calculation method that handles the nonlinearity caused by the mass variation and avoids collisions. The reinforcement learning method is designed to solve the constrained nonlinear optimization problem by using a critic neural network. Specifically, to cope with the position constraint (i.e., glide‐slope constraint) and the thrust force limit constraint, a modified cost function is proposed, and the associated Hamilton‐Jacobi‐Bellman equation is solved online without using an actor neural network, which significantly reduces the computational burden. The convergence of the critic neural network is proven. Simulation results show the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.