Abstract

The Mars Observer magnetic fields investigation will provide fast vector measurements of the Martian magnetic field over a wide dynamic range. The fundamental objectives of this investigation are (1) to establish the nature of the magnetic field of Mars, (2) to develop appropriate models for its representation, which take into account the internal sources of magnetism and the effects of the interaction with the solar wind, and (3) to map the Martian crustal remanent field to a resolution consistent with the Mars Observer orbit altitude and ground track separation. The basic instrumentation complement implemented for this mission is a synergistic combination of a dual, triaxial, flux gate magnetometer system and an electron reflectometer with sensors mounted on a spacecraft boom. The dual magnetometer system allows the real‐time estimation and correction of spacecraft‐generated fields, while the electron reflectometer provides remote magnetic field sensing capabilities. These instruments have an extensive spaceflight heritage, and similar versions of the same have been flown in numerous missions like Voyager, Magsat, International Solar Polar mission (ISPM), Giotto, Active Magnetospheric Particle Tracer Explorers, and Global Geospace Science (GGS). Depending on the telemetry rate supported, a minimum of 2–16 vector samples per second will be acquired. The instrument is microprocessor controlled, can be partially reprogrammed in flight, and supports the packet telemetry protocol implemented for Mars Observer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.