Abstract

An experimental study was undertaken to determine how the spectral and photometric properties of representative Martian areas are affected by fallout of atmospheric dust suspended during dust forms. A laboratory apparatus was used to simulate the uniform fallout and deposition of particles 1 to 5 μm in diameter. Spectral measurements from 0.4- to 1.2-μm wavelengths and photometric measurements at several wavelengths were made for a number of Mars-analog materials before and after deposition of 6 × 10 −5 to 1.5 × 10 −3 g/cm 2 of simulated fallout. These results indicate that the spectral and photometric properties of Martian regions can be affected significantly even by minute amounts of fallout. For instance, the reflectance at 0.56 μm of an average dark area will increase by 35% after deposition of only 9 × 10 −5 g/cm 2, and by 70% after deposition of 1.5 × 10 −4 g/cm 2. Thus the fallout from even one dust storm season (∼2 × 10 −3 g/cm 2) is sufficient to change significantly the spectral and photometric characteristics of the substrate material, if the fallout were ubiquitous over the surface and if no competing processes of dust removal from surface grains occured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.