Abstract
Traditionally, data that has both linear and hierarchical structure, such as annotated linguistic data, is modeled using ordered trees and queried using tree automata. In this paper, we argue that nested words and automata over nested words offer a better way to capture and process the dual structure. Nested words generalize both words and ordered trees, and allow both word and tree operations. We study various classes of automata over nested words, and show that while they enjoy expressiveness and succinctness benefits over word and tree automata, their analysis complexity and closure properties are analogous to the corresponding word and tree special cases. In particular, we show that finite-state nested word automata can be exponentially more succinct than tree automata, and pushdown nested word automata include the two incomparable classes of context-free word languages and context-free tree languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.