Abstract
We consider a periodic-review single-product inventory system with fixed cost under censored demand. Under full demand distributional information, it is well known that the celebrated (s, S) policy is optimal. In this paper, we assume the firm does not know the demand distribution a priori and makes adaptive inventory ordering decisions in each period based only on the past sales (a.k.a. censored demand). Our performance measure is regret, which is the cost difference between a feasible learning algorithm and the clairvoyant (full-information) benchmark. Compared with prior literature, the key difficulty of this problem lies in the loss of joint convexity of the objective function as a result of the presence of fixed cost. We develop the first learning algorithm, termed the [Formula: see text] policy, that combines the power of stochastic gradient descent, bandit controls, and simulation-based methods in a seamless and nontrivial fashion. We prove that the cumulative regret is [Formula: see text], which is provably tight up to a logarithmic factor. We also develop several technical results that are of independent interest. We believe that the developed framework could be widely applied to learning other important stochastic systems with partial convexity in the objectives. This paper was accepted by Chung Piaw Teo, optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.