Abstract

To test the performance of dual-energy computed tomography (CT) in the assessment of marrow adipose tissue (MAT) content of the lumbar spine by using proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy as a reference standard and to determine the influence of MAT on the assessment of bone mineral density (BMD). This study was institutional review board approved and complied with HIPAA guidelines. Written informed consent was obtained. Twelve obese osteopenic but otherwise healthy subjects (mean age ± standard deviation, 43 years ± 13) underwent 3-T (1)H MR spectroscopy of the L2 vertebra by using a point-resolved spatially localized spectroscopy sequence without water suppression. The L2 vertebra was scanned with dual-energy CT (80 and 140 kV) by using a dual-source multi-detector row CT scanner with a calibration phantom. Mean basis material composition relative to the phantom was estimated in the L2 vertebra. Volumetric BMD was measured with and without correction for MAT. Bland-Altman 95% limits of agreement and Pearson correlation coefficients were calculated. There was excellent agreement between (1)H MR spectroscopy and dual-energy CT, with a mean difference in fat fraction of -0.02 between the techniques, with a 95% confidence interval of -0.24, 0.20. There was a strong correlation between marrow fat fraction obtained with (1)H MR spectroscopy and that obtained with dual-energy CT (r = 0.91, P < .001). The presence of MAT led to underestimation of BMD, and this bias increased with increasing MAT content (P < .001). Dual-energy CT can be used to assess MAT content and BMD of the lumbar spine in a single examination and provides data that closely agree and correlate with (1)H MR spectroscopy data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.