Abstract
B95-8, an Epstein-Barr virus-transformed marmoset B-lymphoblastoid cell line, and its derivative B95a, capable of attachment to a substrate surface, were 10,000-fold more sensitive to measles virus present in clinical specimens than were Vero cells. B95-8 and B95a cells were thus thought to be useful host cells for the isolation of measles virus. Quantitation of measles virus present in clinical specimens showed that a large quantity of virus, exceeding 10(6) 50% tissue culture infective doses per ml of a nasal-swab eluate, is shed into secretions by patients with acute measles, consistent with the contagiousness of the disease. Measles viruses isolated in B95a cells differed in some biological properties from those adapted to Vero cells. First, the viruses isolated in B95a cells did replicate in Vero cells, but release into the fluid phase was less efficient than that of Vero cell-adapted viruses. Second, minor antigenic differences were found between virus strains isolated in B95a cells and those isolated in Vero cells from the same clinical specimens. Third, the viruses isolated and propagated in B95a cells caused clinical signs in experimentally infected monkeys resembling those of human measles. It was suspected that measles virus is subject to host cell-mediated selection and that the viruses grown in B95a cells are more representative of measles virus circulating among humans than are the viruses selected in Vero cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.